L'énergie est la grandeur physique qui se conserve lors de toute transformation d'un système physique fermé.
Le principe de conservation de l'énergie signifie, en substance, que « rien ne se perd ni ne se crée », et que l'énergie ne peut qu'être transformée (passer d'une forme sous une autre) ou transférée (passer d'une partie du système à une autre). Une manifestation tangible de ce principe est l'exemple du pendule pesant idéal en mécanique. L'énergie cinétique (liée à la vitesse de déplacement du pendule par rapport à la Terre) se transforme en énergie potentielle de pesanteur (liée à la position du pendule par rapport à la Terre) et réciproquement. Il est possible de généraliser ce raisonnement, dans un premier temps, à tous les types d'oscillateurs (mécaniques ou électriques), et plus généralement à tout système connaissant une évolution, à l'échelle macroscopique ou microscopique, dans le domaine de la physique.
En 1905, Albert Einstein a énoncé le principe de conservation masse-énergie, selon lequel un corps possède une énergie égale au produit de sa masse par la vitesse de la lumière au carré (la célèbre équation e = mc2). Cette formule a introduit une équivalence entre matière et énergie ; ainsi, si la masse d'un corps diminue, celui-ci aura tendance à céder de l'énergie, et vice versa. Dans le cas d'une réaction de fission nucléaire par exemple, un noyau atomique se scinde en deux autres noyaux, de masse totale moindre, la réaction s'accompagnant d'un fort dégagement d'énergie.
Le principe de conservation de l'énergie signifie, en substance, que « rien ne se perd ni ne se crée », et que l'énergie ne peut qu'être transformée (passer d'une forme sous une autre) ou transférée (passer d'une partie du système à une autre). Une manifestation tangible de ce principe est l'exemple du pendule pesant idéal en mécanique. L'énergie cinétique (liée à la vitesse de déplacement du pendule par rapport à la Terre) se transforme en énergie potentielle de pesanteur (liée à la position du pendule par rapport à la Terre) et réciproquement. Il est possible de généraliser ce raisonnement, dans un premier temps, à tous les types d'oscillateurs (mécaniques ou électriques), et plus généralement à tout système connaissant une évolution, à l'échelle macroscopique ou microscopique, dans le domaine de la physique.
En 1905, Albert Einstein a énoncé le principe de conservation masse-énergie, selon lequel un corps possède une énergie égale au produit de sa masse par la vitesse de la lumière au carré (la célèbre équation e = mc2). Cette formule a introduit une équivalence entre matière et énergie ; ainsi, si la masse d'un corps diminue, celui-ci aura tendance à céder de l'énergie, et vice versa. Dans le cas d'une réaction de fission nucléaire par exemple, un noyau atomique se scinde en deux autres noyaux, de masse totale moindre, la réaction s'accompagnant d'un fort dégagement d'énergie.