Lois de Newton, quantité de mouvement et conservation de l'énergie mécanique
Énoncés
Exercice 1 (d'après Nouvelle-Calédonie, 2018)
Détecteur ionique de fumées
Le principe de ce détecteur de fumées repose sur l'ionisation de l'air par des particules α. En l'absence de fumées, ces particules arrachent des électrons aux molécules de dioxygène et de diazote présentes dans la chambre à ionisation. Pour le dioxygène, l'ionisation nécessite un apport d'énergie de 12 eV par molécule. Les ions et les électrons formés par l'ionisation de l'air sont soumis à un champ électrique uniforme entre deux plaques. Un courant électrique de faible intensité apparaît alors dans le circuit électrique (figure 1). Lorsque la fumée pénètre dans la chambre à ionisation, une partie des électrons et des ions issus de l'ionisation se fixent aux poussières de fumée. La baisse de l'intensité du courant électrique qui en résulte déclenche un avertisseur sonore.D'après La physique par les objets quotidiens, C. Ray et J.-Cl. Poizat, éditions Belin
Données :
• électronvolt : 1eV = 1,6 × 10-19 J ;
• charge élémentaire : e = 1,6 × 10-19 C ;
• pour un condensateur plan, le champ électrostatique E est relié à la tension U et à la distance d qui sépare les plaques par la relation : ;
• charge de la particule ;
• masse d'une particule ;
• intensité du champ de pesanteur terrestre :
On s'intéresse au mouvement d'une particule α arrivant dans la chambre à ionisation en l'absence de fumée. Cette particule arrive en un point O avec un vecteur vitesse initial parallèle aux plaques C et D du condensateur plan (voir figure 2). Une tension constante U = 9 V est appliquée entre les deux plaques C et D. La valeur de la vitesse initiale est . On étudie le mouvement de la particule α dans le référentiel terrestre supposé galiléen. À l'instant t = 0, la particule α est au point O.
Lors de cette étude, on négligera les éventuelles collisions avec les molécules de l'air, ainsi que l valeur du poids de la particule α devant la valeur de la force électrostatique subie par cette particule.
Lors de cette étude, on négligera les éventuelles collisions avec les molécules de l'air, ainsi que l valeur du poids de la particule α devant la valeur de la force électrostatique subie par cette particule.
1. Vérifier quantitativement que l'hypothèse concernant le poids de la particule α est justifiée.
2. Reproduire sur la copie le schéma de la figure 2, puis y représenter le champ électrostatique et la force électrostatique que subit la particule α au point O. Justifier.
3. Établir que les équations horaires du mouvement de la particule α sont :
4. Déterminer la valeur de la coordonnée yL de la particule lorsqu'elle a parcouru une distance suivant l'axe (Ox) égale à L = 4,0 cm. Expliquer pourquoi le mouvement de cette particule peut être considéré comme rectiligne dans la chambre d'ionisation.
5. Montrer que l'énergie cinétique initiale des particules α est suffisante pour ioniser des molécules de dioxygène.
Exercice 2 (d'après Antilles, 2019)
L'objectif de cet exercice est d'étudier le mouvement d'un perchiste au cours de la phase ascendante de son saut.
Données :
Données :
• masse du perchiste : m = 70 kg ;
• intensité du champ de pesanteur : ;
• hauteur du tapis de réception : h = 0,70 m ;
• hauteur du saut : H = 5,4 m.
La phase ascendante est composée de trois étapes :
• étape 1 : flexion de la perche (la perche emmagasine de l'énergie en se déformant) ;
• étape 2 : déflexion de la perche (la perche restitue son énergie en reprenant sa forme initiale) ;
• étape 3 : « chute libre » ascendante.
La figure montre l'évolution des différentes formes d'énergie du perchiste au cours de cette phase.
1. Déterminer, à partir des courbes d'énergies, la valeur de la vitesse à l'instant t1 = 7,1 s. Pour simplifier l'étude, on assimile le perchiste à un point matériel dans toute la suite du problème.
2 Déterminer, à partir des courbes, la valeur de la hauteur H du saut (distance entre le sol et la position la plus haute du perchiste) et comparer avec la valeur proposée dans les données.
3. Identifier, sur la figure, les différentes étapes de la phase ascendante, en indiquant pour chacune l'instant du début et de la fin de l'étape.
4. Comparer les énergies mécaniques du perchiste aux instants t1 = 7,1 s et t2 = 9 s. Interpréter.
5. Comment évoluerait la performance du perchiste si sa vitesse à l'instant t1 était plus élevée ?
Annexes
© 2000-2024, rue des écoles