Sujet 0, épreuve commune, exercice 3, 2019
Exercice 3 (5 points)
Une compagnie d'assurance auto propose deux types de contrat :
D'une manière générale, la probabilité d'un événement A est notée (A) et son événement contraire est noté .
On note les événements suivants :
- un contrat « Tous risques » dont le montant annuel est 500 € ;
- un contrat « de base » dont le montant annuel est 400 €.
- 60 % des clients possèdent un véhicule récent (moins de 5 ans). Les autres clients ont un véhicule ancien ;
- parmi les clients possédant un véhicule récent, 70 % ont souscrit au contrat « Tous risques » ;
- parmi les clients possédant un véhicule ancien, 50 % ont souscrit au contrat « Tous risques ».
D'une manière générale, la probabilité d'un événement A est notée (A) et son événement contraire est noté .
On note les événements suivants :
- R « le client possède un véhicule récent » ;
- T « le client a souscrit au contrat "Tous risques" ».
1. Recopier et compléter l'arbre pondéré de probabilité traduisant les données de l'exercice.
2. Calculer la probabilité qu'un client pris au hasard possède un véhicule récent et ait souscrit au contrat « Tous risques », c'est-à-dire calculer ().
3. Montrer que (T) = 0,62.
4. La variable aléatoire X ne prend que deux valeurs a et b. Déterminer ces deux valeurs, les probabilités (X = a) et (X = b), puis l'espérance de X.
Annexes
© 2000-2024, rue des écoles